Postdoctoral Associate, SMART CAMP (Ref: IRG_CAMP_2019_008)

Singapore-MIT Alliance for Research and Technology (SMART) Centre

Singapore, Singapore

ID: 7058231
Posted: June 28, 2019
Application Deadline: July 27, 2019

Job Description

Project Overview

SMART CAMP (Critical Analytics for Manufacturing Personalized-Medicine) is a new interdisciplinary research programme in Singapore (CREATE international research campus and innovation hub) and at the Massachusetts Institute of Technology (MIT). SMART CAMP addresses key technology bottlenecks in cell therapy manufacturing: (i) critical quality attributes of safe, effective cell therapy products; and (ii) integrated process analytics to monitor and modulate those attributes. While cell therapies are poised to transform healthcare for both the industry and the patient, there remain many outstanding scientific and technical challenges to significant global impact that this R&D programme addresses. This high-impact focus includes measurement and feedback control of processing parameters (process analytic technologies, or PAT) that contribute to cell viability and function during cell proliferation, and the measurement at intermediate and final steps of the cell product properties correlated with positive therapeutic outcomes (critical quality attributes, or CQA).

This interdisciplinary team comprises engineers, biologists, clinicians, manufacturing, and data analytics experts from multiple MIT academic units, and multiple Singapore-based universities, research centres of excellence, and hospitals who are experienced at translational demonstrations of technologies in safety-regulated industries such as cell therapies. As with all postdoctoral associates (PDAs) in SMART CAMP based in Singapore, the PDA will work in a diverse team of experts including several principal investigators (PIs) and PDAs, and receive direct mentorship regarding career development from a pair of who are based in Singapore and at MIT, respectively.

CAMP’s unique, enabling and cross-cutting capabilities include cell and clinical biology, microfluidics, real-time optics and spectroscopies, 3D-printed devices, process analytics, data analytics, and bioinformatics. This programme will demonstrate these approaches required of cell-based personalized medicine through three translational testbeds (three Flagship Projects), ultimately facilitating access for more patients to life-saving, approved cell therapies for currently intractable health challenges. These flagship projects will address allogeneic and autologous cell therapy products, including but not limited to cell sources including adult stem/progenitor cells and immune cells for treatment of specific cancers, tissue degeneration, and autoimmune diseases.

Flagship Project 1: Label-free critical quality attributes (CQA) for personalized efficacy of cell therapies, including multivariate analysis of biological and biophysical attributes

Flagship Project 2: Rapid critical quality attributes (CQA) for safety of cell sources & cell therapy products, including process analytic technologies (PAT)

Flagship Project 3: Integrated process analytic technologies (PAT) for cell proliferation and recovery, including in-line and intermittent monitoring to promote efficacy and safety CQA

Job Responsibilities

CAMP Flagship Project 2 – Detection of viral and bacterial nucleic acids

One of the key challenges in deploying cell therapies lies in the analytical assays needed to confirm that they are safe for administration. CAMP will develop assays to detect bacterial and viral contaminants, or adventitious agents, in cell therapy products. Even at low absolute concentrations, presence of such contaminants signals a risk. DNA-based species identification and detection of extremely low-abundance adventitious agent detection can provide critical insight in cell therapy manufacturing, yet the copy number of target DNA / RNA contained in a relatively large volume of starting sample poses a significant technical hurdle – this is not trivial even for real-time PCR. The PDA will address this challenge by developing and employing a culture-free / amplification-free DNA-PNA (peptide nucleic acid) hybridization assay, enabled by microfluidic selective pre-concentration device [Ref: Ouyang W, Li Z, Han J. Pressure-Modulated Selective Electrokinetic Trapping for Direct Enrichment, Purification and Detection of Nucleic Acids in Human Serum. Anal Chem. 2018;90:11366-75].

• Engineering of a multi-step preconcentration system for enhanced volume throughput and detection sensitivity
• Develop a rapid DNA-PNA hybridization assay enabled by a multi-step selective preconcentration system.
• Development of species specific probes for several key pathogens and demonstrate specificity and sensitivity of detection for artificially spiked samples in microbial and tissue culture media.
• Characterize assay characteristics of PNA-based tools to enable their use in a manufacturing setting, by engineering a portable system for local use.

Job Requirements

• Ph.D. degree in biological/biomedical engineering, mechanical engineering, electrical engineering or other relevant engineering discipline
• Strong hands-on ability to carry out experimental engineering / instrumentation development
• Proven track record of microfluidics and microfabrication
• Creativity to solve challenging technical problems with inherent biological complexity and measurement uncertainty
• Good communication skills to work with researchers from biological / clinical backgrounds
• Good track record of publication and scientific output
• Able and committed to work in Singapore


To apply, please visit our website at: http://smart.mit.edu/careers/career-opportunities. Interested applicants are invited to send in their full CV/resume, cover letter and list of three references (to include reference names and contact information). We regret that only shortlisted candidates will be notified.



 

Apply Now

Please mention to the employer that you saw this ad on UniversityJobs.com